

TECH FORUM

Cost estimation of hydrogen admission into existing natural gas infrastructure and end use

Presentations

Study: Cost estimation of hydrogen admission in the gas system

Gert Muller-Syring CEO of DBI

marcogaz

Technical Association of the European Gas Industry

Cost estimation of hydrogen admission into existing natural gas infrastructure and end use

Presentation of final results (23rd Nov. 2023)

Gert Müller-Syring, Hagen Bültemeier, Philipp Pietsch (all DBI), Aurélie Carayol (GRTgaz)

Agenda

- 6 Goals of the study
- Scope and overview of involved competencies
- Methodology
 - 6 General approach
 - Asset volume approximation
 - Mitigation measures
 - Cost estimation
- 6 Results
- Key findings
- [↑] Infografic on H₂ tolerance of gas infrastructure and end use 2023

Goals of the study

- The objective of the study is to analyse the mitigation measures related to retrofitting/repurposing the existing gas infrastructure and end use (domestic and commercial appliances) for different H₂-concentrations
- Cost estimations for 2, 5, 10, 20, 30 and 100 vol.-% H₂ admission are provided considering installed asset volumes and mitigation measures where needed
- Output Of the initial H2-admission infographic published in 2019

Scope and overview of involved competencies

Scope and overview of involved competencies

Considered infrastructure

- Gas-Transmission
- Underground gas storage
- Gas-Distribution
- Gas pressure regulation and metering
- End use (domestic and commercial appliances)

• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	

Evaluation of infrastructure key elements based on e.g.

- Marcogaz documents/statistics,
- TYNDP and NDP
- hydrogen backbone report, 11th EGIG report, ...
- Project results (e.g. THYGA)
- and many contribution of the TF-members and MG working groups

- Capacity increase of pipelines, compressors etc. that might be necessary in case of higher hydrogen concentrations is not considered.
- This and further topics that focuses on individual aspects of operation are acknowledged by a statement of ENTSOG

Results elaborated by Marcogaz TF H2 in cooperation with:

- WG: Gas transmission
- WG: Underground gas storage
- WG: Gas distribution
- WG: Gas utilisation and
- Eurogas and ENTSOG
- Grid operator experts

Methodology

Methodology

General approach - quantification, evaluation, cost assumption

Fualuato	Evaluation			Economic transformation
number/length of gas infrastructure/end use assets in Europe Find appropriate assumptions if no exact numbers are available	Evaluation of specific assets concerning their suitability for considered hydrogen concentrations	Find specific adaptation measures for considered hydrogen concentration (if necessary) and define specific costs for these	Total costs Calculate the costs for repurposing European gas infrastructure/end use infrastructure for hydrogen transport	model

Asset volume approximation

Asset volumes

Example for approximation of asset volumes for "gas transmission assets"

Infrastructure item	Asset volume	Additional information
Steel transmission pipelines	225,000 km	TYNDP 2018
Older pipe construction	121,000 km	before 1984 EN12732, EGIG
Younger pipe construction	104,000 km	after 1984 EN12732, EGIG
Valve stations (existing)	15,400	Extrapolated based on specific values
Valve stations (needed for pure hydrogen service)	11,250	Extrapolated based on specific values
Pigging stations	3,400	Extrapolated based on specific values
Compressor station installed power incl. drive and auxiliaries combined	12,500 MW	Extrapolated based on specific values
Metering stations	870	Extrapolated based on specific value
Pressure regulating stations	-	Covered in a separate section "pressure regulation"
	9	marcogaz

Asset volumes

Example for approximation of asset volumes for "gas distribution pipes"

COUNTRY EU 28 +		Total			
Ukraine	Total (km)	Plastic (km)	Total Steel (km)	Cast Iron (km)	Others (km)
Austria	43,400	30,497	11,423	2	1,478
Belgium	76,334	57,609	17,000	16	1,709
Czech Republic	74,821	43,396	31,425	0	0
Denmark	18,229	15,677	2,552	0	0
Germany	498,500	268,193	218,343	11,964	0
Ireland	11,913	11,794	119	0	0
Italy	262,360	73,329	184,872	2,948	1,211
The Netherlands	125,326	100,261	18,799	3,760	2,507
Poland	170,900	68,360	102,540	0	0
Portugal	19,022	16,721	2,283	19	0
Slovakia	33,301	14,519	18,782	0	0
Spain	74,629	63,980	9,515	1,134	0
France	208,105	146,533	54,469	5,821	1,282
Finland	1,911	1,808	83	20	0
Slovenia (1)	4,342	2,464	1,700	108	70
UK	126,335	81,657	7,242	17,362	20,074
Greece	6,080	4,663	1,281	136	0
Romania	17,218	8,958	8,260	0	0
Cyprus	0	0			
Latvia (1)	5,501	3,122	2,153	137	89
Estonia (1)	2,151	1,220	842	54	35
Lithuania (1)	8,300	4,710	3,249	207	134
Croatia (1)	18,386	10,435	7,197	458	296
Malta (1)	0	0			
Sweden (1)	2,720	1,543	1,065	68	44
Bulgaria (1)	248	141	97	6	4
Luxembourg (1)	1,962	1,113	768	49	32
Hungary (1)	83,999	47,672	32,879	2,094	1,354
RGC Ukraine	350,000	126,781	223,219	0	
TOTAL	2,245,993	1,207,156	962,156	46,362	30,318

marcogaz

Asset volumes

Example for approximation of asset volumes "Underground Gas Storage facilities"

11

2) Estimation Number of UGS facilities according to type

Main Component and Type	Calculation / Assumption	Amount for representative type-UGS
Compressors Turbo Compressors Piston Compressors 	 Calculated according to max. injection rate of UGS facility. Turbo-comp. with 150,000 Nm³/h and Piston comp. with 50,000 Nm³/h. 1 compressor in addition for redundancy. Calculated for each European UGS facility. Above 200,000 Nm³/h max. injection capacity utilization of Turbo-compressors, otherwise Piston. 2-stages compression 	 4 turbo 4 piston
Drive engine Electric engine Gas engine Gas turbine 	 One drive engine per compressor. Numbers for different drive engines were applied from a reference project and extrapolated to the European UGS infrastructure 	 3 electrical engine 4 gas engines 1 gas turbine
Cooler	• One per compression stage, i.e. two per compressor.	• 16
Separator	• Calculated according to max. withdrawal rate (3 separators for 1,500,000 Nm ³ /h; rule of three) + 1 for redundancy	• 2
	 Calculation of total number of dryers according to max. withdrawal rate (3 units for 1,500,000 Nm³/h; rule of three) + 1 for redundancy; Analysis of shares of absorption drying, adsorption drying and JT-drying according to IGU WGC 2018 data base and Type of UGC 	 5 absorption 1 adsorption 1 JT
Gas Dryer Absorption Adsorption IT-Dryer 	 UGS Calculation of amount of units per UGS according to type and shares; formation of an average value for all European UGS facilities. 	

1) Number of UGS facilities according to type

Туре	Salt Cavern	Aquifers	Depleted Fields	Total
Number	68	36	101	205

Mitigation measures

Mitigation measures

Example for "gas transmission pipes"

	Mitigation measures according to hydrogen concentration									
	2 vol%	5 vol%	10 vol%	15 vol%	20 vol%	100 vol%				
Steel pipelines before 1984	risk	assessme	nt	ILI and	subsequen pi	t repair for pelines ne	dynamically eded	y operated		
Steel pipelines after 1984	risk	assessme	nt	ILI and	subsequen pi	t repair for pelines ne	dynamically eded	y operated		

Mitigation measures

Example for "underground gas storage facilities"

		Main Component	Cost Unit	Value	0 %	2 vol%	5 vol%	10 vol	15 vol	20 vol	25 vol	30 vol	100 %				
Main Component	Unit	Value	0%		2 vo	 %	5 v	ol%	1	0 vol	~ % 1	.5 vol.	-% 2	0 vol%	25 vol%	30 vol%	100 %
Cooler	EUR	1,130,000	No a	ddition	al cost	t									20%	20%	20%
Separator	EUR	2,130,000	No a	ddition	al cost	t			2	0%	2	20 %	2	20 %	20%	20%	20%
Absorption Gas Dryer	EUR	9,500,000	No a	ddition	al cost	t	20	%	2	0%	2	20 %	2	20 %	20%	20%	20%
Adsorption Gas Dryer	EUR	2,650,000	No a	ddition	al cost	t	20	%	2	0%	2	20 %	2	20 %	20%	20%	20%
JT Gas Dryer	N/A	N/A	N/A		N/A		N/A	A	N	/A	Ν	N/A	1	N/A	N/A	N/A	N/A
Pressure regulator	EUR	105,000	No a	o additional cost						20%							
Turbine gas meter	EUR	54,900	No a	o additional cost						100 %							
Coriolis gas meter	EUR	109,800	No a	lo additional cost 20% 20% 20% 20% 20%					20%	20%							
Ultrasonic gas meter	EUR	109,800	No a	No additional cost 20% 20% 20% 20%					20 %	100 %							
Diaphragm gas meter	N/A	N/A	N/A		N/A		N//	A	N	/A	Ν	N/A	1	N/A	N/A	N/A	N/A
Process gas chromatograph	EUR	150,000	No addit cost	tional	100	%	10	0%	1	00 %	1	LOO %	1	.00 %	100 %	100 %	100 %
Pipeline, 100 % H ₂ - compatible	EUR/m	291	No a	ddition	al cost	t											
Pipeline, not H ₂ -compatible	EUR/m	291	No a	ddition	al cost	t			2	0%	2	20%	2	20 %	20%	20%	20%
Fittings, H ₂ -compatible	EUR	2617	No a	ddition	al cost	t											
		Tubing - not H,-compatible New inner Liner as secondary barrier for protection of Casing	EUR/m EUR/m	370	No addition	al cost 100 %	20 % 100 %	20 % 100 %	20 % 100 %	20 % 100 %	100 % 100 %	100 % 100 %	100 % 100 %				
		Sand filter (in case porous UGS)	N/A	N/A	No addition	al cost											
			EUR	370,000	No addition	al cost											

370,000 No additional cost 20 % 20 % 20 % 20 % 100 % 100 % 100 % EUR 290,000 No additional cost 20 % 20 % 20 % 20 % 100 % 100 %

H₂- EUR

Cost estimation

Cost estimation

Example for approximation of "gas transmission pipes"

		Adaption costs according to the hydrogen concentration										
	0 vol%	2 vol%	5 vol%	10 vol%	15 vol%	20 vol%	25 vol%	30 vol%	100 vol%			
Steel pipelines before						274,000						
1984		0 El	JR		23,00	epair	EUR/km					
									229,000			
Steel pipelines after 1984	el pipelines after 1984 0 EUR						50,000 EUR/re	epair	EUR/km			

Cost assumptions

Example for approximation for Underground "Gas Storage facilities"

Main Component	Cost										
	Unit	Value	0 %	2 vol%	5 vol%	10 vol	15 vol	20 vol	25 vol	30 vol	100 %
						%	%	%	%	%	
	EUR	6,280,000	No addition	nal cost			20 %	20 %	20 %	20 %	100 %
Turbo compressor						00.0/				22.41	22.44
Dicton comprocesor	EUR	6,280,000	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
Piston compressor	FLIR	6 280 000	No additio	nal cost							
Electric motor	LON	0,200,000	No addition	iai cosc							
	EUR	6,280,000	No addition	nal cost				20 %	20 %	20 %	20 %
		.,,									
Gas engine											
Contraction .	EUR	6,280,000	No addition	nal cost	20 %	20 %	20 %	20 %	20 %	20 %	100 %
Gas turbine	ELID	1 120 000	No addition	aal coct					20.9/	20.%	20.%
Cooler	LUK	1,130,000	No adultion	iai cost					20 /0	20 %	20 %
	EUR	2,130,000	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
Separator											
	EUR	9,500,000	No addition	nal cost	20 %	20 %	20 %	20 %	20 %	20 %	20 %
Absorption Gas Dryer											
Adcorption Coc Druct	EUR	2,650,000	No addition	nal cost	20 %	20 %	20 %	20 %	20 %	20 %	20 %
IT Gos Dryer	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	N/A	NI/A
Pressure regulator	FUR	105.000	No additio	nal cost	N/A	N/A	IN/A	N/A	N/A	N/A	20 %
Turbine gas meter	EUR	54,900	No addition	nal cost							100 %
Coriolis gas meter	EUR	109,800	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
	EUR	109,800	No addition	nal cost			20 %	20 %	20 %	20 %	100 %
Ultrasonic gas meter											
Diaphragm gas meter	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	EUR	150,000	No	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Process gas			additional								
Chromatograph	ELID /m	201	COST	alaast							
ripeline, 100 % n ₂ -	EUR/III	291	NO addition	Idi COSL							
Pineline not H	FLIR/m	291	No additio	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
compatible											
Fittings, H ₂ -compatible	EUR	2617	No addition	nal cost							
	EUR	2617	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
Fittings, not H ₂ -compatible											
Field pipeline, H ₂ -	EUR/m	500	No addition	nal cost							
compatible											
Field pipeline, not H ₂ -	EUR/m	500	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
compatible	CUD.	260.000	No odditio	alaast		20.0/	20.9/	20.9/	20.9/	20.9/	20.9/
Flare	FUR	160,000	No addition	nal cost		20 %	100 %	100 %	100 %	100 %	100 %
Burners	EUR	390.000	No addition	nal cost		20 %	100 %	100 %	100 %	100 %	100 %
Desulfurization	EUR	530,000	No addition	nal cost		20 %	20 %	20 %	20 %	20 %	20 %
LCCS			No addition	nal cost							
Packer	EUR	180,000	No addition	nal cost	20 %	20 %	20 %	20 %	100 %	100 %	100 %
Tubing - H ₂ -compatible	EUR/m	370	No addition	nal cost							
	EUR/m	370	No addition	nal cost	20 %	20 %	20 %	20 %	100 %	100 %	100 %
Tubing - not H ₂ -compatible	EUD/m	270	100.%	100.%	100.%	100.%	100.%	100.%	100.9/	100.%	100.%
New Inner Liner as	EUR/III	570	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
protection of Casing											
Sand filter (in case porous	N/A	N/A	No addition	nal.cost							
UGS)	.,,										
	EUR	370,000	No addition	nal cost							
Wellhead, H ₂ -compatible											
Wellhead, not H ₂ -	EUR	370,000	No addition	nal cost	20 %	20 %	20 %	20 %	100 %	100 %	100 %
compatible											
SV	FUR	290.000	No addition	nal cost	20 %	20 %	20 %	20 %	100 %	100 %	100 %

Results

Results

COST ESTIMATION OF HYDROGEN ADMISSION INTO EXISTING NATURAL GAS INFRASTRUCTURE AND END USE

			Adaption cost in % according to hydrogen concentration										
		2 vol%	5 vol%	10 vol%	15 vol%	20 vol%	25 vol%	30 vol%	100 vol%	New build H ₂ infrastruc	d ture		
Gas- transmission	Total adaption costs compared to new build H_2 IS in %	0.03	0.28	0.71	2.4	2.6	11.5	11.5	27.7	100			
UGS	Total adaption costs compared to new build H_2 IS in %	0.1	7.1	10.8	13.4	15.5	25.8	25.8	38.3	100			
GPRMS	Total adaption costs compared to new build H_2 IS in %	2.2	2.2	2.2	3.9	3.9	3.9	3.9	33.2	100			
Gas- distribution	Total adaption costs compared to new build H_2 IS in %	0.07	0.07	0.07	0.07	0.07	4.8	4.8	6.4	100			
End Use (domestic and commercial)	Total adaption costs compared to new build H ₂ IS in %	0.0	0.0	0.0	0.0	0.0	14.8	14,8	100.0	100			
Total gas- infrastructure	Total adaption costs compared to new build H ₂ IS in % without end use	0.3	0.7	1.0	1.9	2.1	8.0	8.0	19.0	100			
Total gas- infrastructure, domestic and commercial end use	Total adaption costs compared to new build H ₂ IS in %	0.2	0.5	0.7	1.4	1.5	9.8	9.8	40.5	100			
				19					mar	coga	Ζ		

Results

Cost estimation of hydrogen admission into existing natural gas infrastructure and end use

		Ado	ption c to	ost (ii hydro	n bn E ogen c	UR ai concei	nd %) ntratio	accor	ding	
		2	5	10	15	20	25	30	100	New
		vol,-	vol,-	vol,-	vol,-	vol,-	vol,-	vol,-	vol,-	build
		%	%	%	%	%	%	%	%	H2
Total gas_infrastructuro	Total adoption costs compared to new build H_2 IS in %	0.3	0.7	1.1	2.0	2.1	8.0	8.0	19.0	100
	(without residential and commercial appliances)									
total gas- infrastructure, dom,/com, End use	Total adoption costs compared to new build H ₂ IS in %	0.2	0.5	0.8	1.5	1.5	10	10	41	100

Marcogaz

Key findings & conclusions

COST ESTIMATION OF Transformation costs in comparison to a new build infrastructure

The following results are based on an average cost approximation on European level. The situation in single countries might be different. in some cases, parts of the infrastructure might have to be modified/replaced also for low hydrogen concentrations e.g. due to capacity requirements, technical restrictions or regulatory issues. Those cases are not considered in the general results.

- 1. Up to 10 vol.-% H₂ the transformation cost is less than 1% of CAPEX for a new build infrastructure*.
- 2. Up to 30 vol.-% H₂ the transformation cost is equal to 10% of CAPEX for a new build infrastructure*.
- 3. For pure hydrogen service the transformation cost is less than 20% of CAPEX for a new build infrastructure.
- 4. Next to the shown financial advantages of transforming the existing infrastructure* this will also lead to a faster establishing of a H2ready infrastructure with less negative effects on the environment and lower carbon footprint.

marcoa

Infografic on H₂ tolerance of gas infrastructure and end use 2023

OVERVIEW OF AVAILABLE TEST RESULTS* AND REGULATORY

This infographic aims at providing an overview of the technical readiness of the gas infrastructure and end use (domestic and commercial appliances) equipment to handle hydrogen-natural gas mixtures.

The infographic focuses on material aspects and functional principles. It does not consider the effect of increasing levels of hydrogen on performance. efficiency and output.

available studies* Modifications

were found R&D/

Key steps of study development

- 4th of April: Distributing the draft version to:
 - WG Gas transmission
 - MG Storage
 - MG Distribution
 - 6 End use
 - TF H2
 - In ENTSOG
 - 6 Eurogas
 - In total 130 recipients
- A Based on the feedback and the remarks received in the SCGI meeting (April) the final draft report was developed and has been distributed on the 3rd of July
- Additional feedback was received and in total more than 500 remarks have been processed
- There was an intensive and good exchange with ENTSOG and the remarks of ENTSOG have been processed in a separate report version to be as transparent as possible

What have we learnt?

Using existing infrastructure for hydrogen supports the energy transition!

A Many thanks to all who have supported A

If you need support for transforming your infrastructure – please visit: <u>https://www.verifhy.de/</u>

marcoac

marcogaz

Technical Association of the European Gas Industry

Thank you!

marcogaz.org 😡 🕼 @marcogaz_EU marcogaz.org 💮 in be.linkedin.com/company/marcogaz

Case: Transmission systems operators decarbonizing the gas grid

Steven van Caekenberghe

Head of Technical Management at Nextgrid, Fluxys

www.marcogaz.org

Transmission system operators decarbonizing the gas grid

MARCOGAZ Tech Forum Webinar 23 November 2023

Steven Van Caekenberghe

Who we are?

4 facts about Fluxys, a midstream infrastructure company not involved in energy production or supply

 Fully independent energy infrastructure partner headquartered in Belgium

- 2 Strong European presence with associated companies across Europe and entities in LatAm
- A growing group of 1 300 employees
- Purpose-driven company committed to building a greener energy future for the generations to come

shaping together a bright energy future

Terminalling Transmission Storage 7610 GWh 380 TWh/y of 24 000 km LNG regasification capacity with underground gas pipelines in operation terminals in Belaium, France, aas storage Greece & Chile in Belaium

fluxys nextgrid | MARCOGAZ Tech Forum Webinar

With our infrastructure we can contribute to the decarbonisation

Fluxys in full swing to develop and re-use our infrastructure into a multi-molecule system supporting industries' decarbonisation path

Sources for expected demand: S&P Global (IHS) base case, ETS database, Fluxys analysis

Almost 100% of pipelines repurposable

first infrastructure in 2026 length 150 km

Belgian Hydrogen Strategy has four key pillars Hydrogen anchored within an overall Federal strategy to enable 100% renewable, competitive

and secured supply, with an adequate mix of energy carriers

Fluxys' network development enables a cost-efficient future build-out towards mature backbone in next phases

R

Phase 1: By 2026

Phase 2: 2028 - 2030

Phase 3: Beyond 2030

Development Zeebrugge LNG terminal into multi-molecule hub

- NH₃ import terminal
- Export CO₂ terminal

Case: Distribution systems operators decarbonizing the gas grid

Jose Catela Pequeno

Head of Special Projects at Floene

www.marcogaz.org

CREEN D PROJECT The Natural Energy of Hydrogen.

INSTITUTIONAL PARTNERS

Gestene

Seixal

1 Floene Overview

Floene is the largest gas distributor in Portugal with approx. 72% market share⁽¹⁾

Overview

- Floene is the leading gas distributor in Portugal:
 - Manages nine Regional Gas Distribution
 Operators ("DSO"), which account for c. 72%⁽¹⁾
 of the gas distribution network under the public service regime.
 - Operates one of the most modern and efficient gas infrastructures in Europe, mostly made up of polyethylene pipelines (94%), with an average age of c. 16 years.

Selected Technical Indicators⁽²⁾

- 1,131k connection points
- 106 municipalities
- 13,673 km network length
- 16,733 GWh of gas distributed

Notes: (1) In terms of connection points. (2) Per Annual Report 2022, as of 31 December 2022. (3) Meet Europe Natural Gas, Lda. (consortium formed by the Japanese companies Marubeni Corporation and Toho Gas Co.Ltd.)

2 Portuguese Landscape: Growing Focus On Renewable Gases

Positive momentum in the energy sector in Portugal, with current policies and legal framework supportive of decarbonization

National Energy & Climate Plan 2030 December 2019

 The current gas infrastructure will play a key role in the distribution of renewable gases

National Hydrogen Strategy August 2020

• 10% - 15% injection H₂ into gas grids by 2030.

- 2 2.5 GW in electrolyser capacity.

National Recovery & Resilience 2030 October 2020

- € 186m to H₂ and renewable gases to support the investment, mostly private, in the increase of the installed capacity in electrolysers.
- € 715m towards decarbonizing the industrial sector.

Ordinance nº15/2023

Competitive procedure for the injection of renewable gases into the gas grid:

- H₂: 120 GWh/year (max. support of 127 €/MWh)
- Biomethane: 150 GWh/year (max. support of 62 €/MWh)

Biomethane - 14

Green Hydrogen - 131

INJECTION REQUESTS

to the networks operated by **FLOENE**

Source. Company information, Plano Nacional Energia e Clima 2030 (PNEC 2030), Estratégia Nacional para o Hidrogénio from Direção Geral de Energia e Geologia, Plano de Recuperação e Resiliência 2030.

3 Small scale Green Hydrogen injection into the gas grid

H ₂ Producer	
Customers	~ 80 Mainly Residential
Project duration (years)	2
H ₂ to be injected (Nm ³ /2 years)	131,400 (45% from solar cells; 55% from the grid)

- Hydrogen is produced by GESTENE, using a 57 kW Mc Phy electrolyser, capable of producing 10 Nm³/h of 99.999% pure H_2 at 10 bar.
- Power supplied by solar panels and public grid.
- Solar panels capacity: 25 kW
- A suitable H₂ injection point was identified, downstream to a Pressure Reduction Station (PRS 50) where a H₂/NG Mixing Station was installed
- A 4 bar, 100% H₂, PE connection line was built between GESTENE premises and the Mixing Station.
- A small area of the natural gas grid, supplied by the PRS 50, with about 80 customers, was isolated from neighbouring grid, becoming the object of the Project.
- H₂ blending up to 20% in 2% increments (currently 12%)
- Injection started in July 2022
- Project fully funded by the Environmental Fund

F

Internal Use

SAFE

ENE

DISTRIBUÍMOS ENERGIAS DE

Internal Use

F

F

S

Π

RVICE

Fair Billing

Continuity of supply

Network operation procedures

- •Leakage survey
- •Pipeline commissioning and decommissioning
- •Emergency response
- ATEX manual review
- Customer Field Service procedures

 Appliance operation control
 - •Leakage survey
 - •Emergency response

Internal standards review

Current H2 % = 12%

No issues with customers

Mixing station controls H2/NG percentage accurately

Billing system performs well

•Calorimeter very easy to operate and accurate

•Modifications made are suitable for future commercial projects

Station design should be improved

•Three rooms instead of two – the calorimeter is temperature sensitive and should be isolated

Floene is ready to cope with commercial H2 blending projects

The first of which is expected to go on-stream in the 2nd Q 2024

EVIE

DISTRIBUÍMOS ENERGIA

3 Our Partners in the project

PRF – Gas Solutions

BOSCH

H2 production

Mixing Station Construction

Municipality Support

iSQ

Instituto de Soldadura e Qualidade

HAZOP, ATEX, Safety Inspections

GAS Appliance Supplier

4 Hydrogen Production and Storage

Electrolyser at Gestene

H2 Storage at Gestene

H2 pressure regulation and odorization at Gestene

DISTRIBUÍMOS ENERGIAS DE FUTURO

F

5 Mixing Station

Mixing station

Local Control Panel outside and inside

Calorimeter

Static Mixer

The Hulle Is coming

With the power of The Natural Energy of Hydrogen.

DISTRIBUÍMOS ENERGIAS DE FUTURO

For further questions and clarifications: José Catela Pequeno Jpequeno@Floene.pt

Opening, Q&A Session and closing remarks available in the full video of the webinar, published on the **Communications Hub/Videos** section of our website